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METHODS AND SYSTEMS FOR PRODUCING
AN IMPLANT

This application is a continuation of U.S. application Ser.
No. 13/228,517, filed Sep. 9, 2011, which is a continuation of
U.S. application Ser. No. 10/089,467, filed Mar. 27, 2002,
which is a U.S. National Stage Entry of International Appli-
cation PCT/US2000/22053, filed Aug. 11, 2000, which
claims the benefit of U.S. Provisional Application Nos.
60/148,275,60/148,277, and 60/148,393, which were all filed
Aug. 11, 1999. All prior applications are incorporated by
reference.

BACKGROUND OF THE INVENTION

The present invention relates to fabricating implants to
replace bony structures. More specifically, the invention
relates to a system and methodology for fabricating a “drop
in” replacement for a particular segment of missing bony
structure, in which the implant fits precisely within the con-
tours of the missing segment and thus minimizes complica-
tions during the surgical procedure to install the implant, and
subsequently during the healing process. It will be appreci-
ated, however, that the invention is also amenable to other like
applications.

Various systems and methods of fabricating prosthetic
implants are known in the prior art. Examples of such prior
systems and methods include U.S. Pat. Nos. 4,436,684;
5,274,565, 5,357,429; 5,554,190, 5,741,215; and 5,768,134.
Each of these patents, however, suffer from many disadvan-
tages that have collectively limited the usefulness of their
methods and implants to the relevant field.

Neural Network Segmentation

Although clinical visualization of three dimensional organ
surfaces embedded in an imaged volume is now common,
segmentation techniques are often ineffective and time con-
suming. Current three dimensional (3D) surface segmenta-
tion is often dependent on the contrast and resolution of two
dimensional (2D) anatomical boundaries identified by an
operator proceeding slice by slice through the image volume.
Existing automated 3D surface and volume segmentation
algorithms, such as region growing, are most commonly
based on voxel intensity, nearest neighbor similarity, and
edge strength. An active contours energy minimization
approach attempts to automate 2D outline detection. An
extension to 3D suggests regions to be segmented by inter-
nally enveloping them with three dimensional bubbles.
Another method based explicitly on high level volumetric
shape features utilizes prior information obtained from pre-
viously imaged anatomical objects. This approach is based on
prior morphological knowledge and a highly integrated set of
model based grouping operations. The use of prior informa-
tion allows the last method to be more adaptive to an expected
surface when it encounters noise due to artifact or non-de-
script structures such as in thin areas. However, detection of
anatomical surfaces as complex as the skull or soft tissue face
with prior information alone is computationally expensive. It
is likely manual work will be necessary where the signal is too
low, especially in regions with high artifact noise or where
artifact-interrupted surface morphology may obfuscate a
match with database information. The relationship of artifacts
to surface morphology is dependent on both surface proxim-
ity to the artifact-generating structure and patient pose. To
overcome these limitations, a third approach, combines semi-
automatic image segmentation procedures with intelligent
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scissors. A user steers the image segmentation via live wire
and live lane tools through the image volume.

Current slice-based segmentation methods tend to be time
consuming. Imprecision correlates with the numbers of deci-
sions the operator is forced to make. These are concentrated in
areas of poor contrast, artifact, or insufficient geometry for
the user to recognize local aspects of the patient’s anatomy
(i.e., the sufficiency of anatomical cues are heavily dependent
on structural size and degree of curvature as well as how
patient pose affects the representation in tomographic
images). Difficulty in making segmentation decisions based
on these three (3) types of information may be compounded
by a user environment where an image volume is presented as
a series of tomographic or projection images that lose reso-
lution when reformatted. In all cases these two dimensional
views require anticipation of how the segmented outlines will
combine to form the 3D surface that the user wishes to render.

Deformable curve fitting for edge detection seems less
adaptable than manual segmentation for determining the
location of anatomical edges. Curve fitting runs into trouble
when edges vary in signal strength, requiring multiple initial-
ization and guidance steps to obtain best-fit. An operator
familiar with the salient anatomy quickly adapts to provide
continuity between areas of material inhomogeneities (i.e.,
varying pixel intensity) that may signal a break to an edge
detection algorithm. It is possible that these edges can be
spanned by the use of geometrically ideal shapes or those
based on prior information. However, these simple models
are less adaptable, or less decisive, than manual segmenta-
tion.

Neural networks, applied to volume image segmentation,
are capable of modeling structural components in the image
through the processing of the gray scale and spatial informa-
tion recorded in volume images. They take advantage of the
multidimensional nature of medical images. Neural network
classification can be either supervised or unsupervised. To
date, supervised neural networks have been preferred, despite
their dependence on user interaction to train or correct their
results. Unsupervised neural networks do not rely on pre-
labeled samples. Rather, they require careful selection of
input events that, when clustered, are useful to the user.

Fitting a Deformable Template to a Segmented
Surface

There is debate as to whether comparison of three dimen-
sional (3D) anatomical shapes should be done on the basis of
whole objects or elementally. One conventional method for
3D anatomical surface parsing begins with identification of a
specialized class of space curves, which are referred to as
“ridge curves.”

A consensus ridge curve definition would cite a maximum
first principal curvature along sharp edges as allowing their
representation as a space curve. The curvature found along
ridge curves is regular enough that a class of curvature extre-
mal landmarks can be readily detected. These are referred to
in the literature as Type 11 landmarks, which may be extracted
manually or automatically. These landmarks may form the
initial seed points on which to register a wire frame (i.e., ridge
curve and “geodesic” lines) plate. “Geodesic” space curves, a
shortest path traversed on a graphical manifold, are useful as
a means to link Type II landmarks. The resulting fitted ridge
curve and “geodesic” wireframe are used as a means to tile
out and parameterize 3D surface images. This toolkit allows
parameterized (labeled) surface extractions, multi-surface
registration, and averaging for cephalometric comparisons of
the skull, soft tissue face, and cerebral ventricles.



US 9,275,191 B2

3

Inregards to parameterized 3D surface extraction, the tool-
kit facilitates an initially manual superimposition of a ridge
curve-based deformable template to the perspectively ren-
dered surface of interest at the Type 1I landmarks. However,
there is only an approximate tie between the surface tile
points bounded by ridge and “geodesic” space curves, and the
surface voxels originally identified (segmented) in the raw
CT or MR scan volume image data. The “geodesic” criteria
are less appropriate and these lines have been renamed “tiling
curves.” Additionally, the entire surface is encoded as set of
B-spline space curves, in order to facilitate whole surface
averaging algorithms, (i.e., to average multiple surfaces space
curve by space curve). The toolkit links biological labeling
(homology mapping) and geometric surface subdivision,
resulting in a homology mapped (tile name) parameterized
(**¥ space of'tile) surface.

The primary basis for positioning multiple biological sur-
faces for conventional averaging is a specialized class of
space curves referred to as “ridge curves”. One definition of
ridge curves describes them as biologically significant space
curves found along sharp edges, corresponding to first prin-
cipal curvature maxima. These sharp edges are the most bent
part of the surface. Type II landmarks, identified as recurrent
curvature maxima (bends), are found along ridge curve space
curves. They span these landmarks with what are called “geo-
desics” in order to create three or four sided tiles (“tiling
curves”).

It has been proposed to add tile parameters (i.e., tile u,v
coordinates and tile name) to the xyz point coordinates found
in 3D skull surface images to produce a feature-preserving
average or morphometric comparison of homologous land-
mark. A geometric subdivision (ridge curve and geodesic tile
boundaries) of the surface links biological labels (homology
mapping) to tile grid (***) parameterization of the extracted
points (***). The toolkit begins superimposition of the ridge
curve and geodesic (tiling curve) deformable wireframe tem-
plate with the identification of Type Il landmarks. Using a thin
plate spline, the ridge curve and geodesic template wireframe
is warped to the surface’s Type II landmarks. Superimposi-
tion of the interceding ridge curve and geodesic wire seg-
ments to best position proceeds automatically.

Averaging of Multiple Tiled Out Specimens

When too much of the patient is missing from the image, it
is useful to match the average to the patient to obtain a
reasonable shape to fill the defect. Unlike images of individu-
als, averages are usually relatively smooth and symmetric
(right to left). However, estimating the shape of a defect of
large size with an average of too few subjects is also not
helpful. In this case, it may be better to use the image of a
single relative.

Homology-based 3D surface averaging requires appropri-
ate superimposition of sample member surface points within
a shared reference frame. The toolkit obtains this position in
a series of global warping and local unwarping maneuvers.
First an average of all sample specimen’s Type II landmarks
is obtained. Each specimen is then globally warped to these
landmarks and then locally unwarped. A rough average of the
ridge and geodesic curve sample is produced. Next, because
the space curve sample members are fit to the resulting rough
average space curve, perpendicular bisectors may be posi-
tioned equidistantly along the rough average. An average of
the intercepted points appropriately samples the shape of
each space curve on the entire surface. The “" parameters
determine the number of points along either side of the four
(4) sided tiles and, therefore, contain uxv internal space
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curves, which are averaged in the same manner as the bound-
ary curves. This method insures that these sampling planes
(perpendicular bisectors) are never parallel to the sampled
data.

The present invention provides a new and improved appa-
ratus and method which overcomes the above-referenced
problems and others.

SUMMARY OF THE INVENTION

A method for determining a shape of'a medical device to be
implanted into a subject produces an image including a defec-
tive portion and a non-defective portion of a surface of a tissue
of interest included in the subject. The tissue of interest is
segmented within the image. A template, representing a nor-
mative shape of an external anatomical surface of the tissue of
interest, is superimposed to span the defective portion. An
external shape of an implant, is determined as a function of
respective shapes of the defective portion as seen in the tem-
plate, for repairing the defective portion.

In accordance with one aspect of the invention, a volumet-
ric image of the tissue of interest is produced. In accordance
with a more limited aspect of the invention, one of a CT and
MR image is produced.

In accordance with another aspect of the invention, a posi-
tion for seating the implant into the defective portion is deter-
mined. The implant is tapered as a function of a seating
strategy and a space available for the implant.

In accordance with another aspect of the invention, the
template is superimposed to the surface of the tissue of inter-
est via warping.

In accordance with another aspect of the invention, the
template is warped to an external surface of the non-defective
portion of the tissue of interest.

In accordance with another aspect of the invention, a ridge
and tiling curve homology map is produced of another ana-
tomical surface. The average normative shape is produced
from control surface image representations of the anatomical
surface of interest.

In accordance with a more limited aspect of the invention,
the normative shape is determined from a mirror image of the
tissue of interest.

In accordance with another aspect of the invention, the
normative shape is modified as a function of a shape of the
non-defective portion of the anatomical surface of interest.

A system determines a shape of a medical device to be
implanted into a subject. An imaging device produces an
image including a defective portion and a non-defective por-
tion of a tissue of interest included in the subject. A segment-
ing means segments the tissue of interest. A template spans
the defective portion. The template represents a normative
shape of an external anatomical surface of the tissue of inter-
est. A determining means determines an external shape of an
implant, as a function of respective shapes of the defective
portion and the template, for repairing the defective portion.

Inaccordance with one aspect of the invention, the image is
a volumetric image of the anatomical surface of interest.

In accordance with a more limited aspect of the invention,
the volumetric image is one of a CT and MR image.

In accordance with another aspect of the invention, the
template specifies a seated edge, which is fixed to the subject,
and a surface shape, which is not affixed to the subject.

In accordance with another aspect of the invention, the
template is warped to a deformed bone.

In accordance with another aspect of the invention, the
template is warped to an external surface of the non-defective
portion of the tissue of interest.
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In accordance with another aspect of the invention, the
normative shape of the template is determined from an addi-
tional tissue representative of the hard tissue of interest.

In accordance with another aspect of the invention, the
normative shape of the template is determined as a function of
an average shape of the tissue of interest.

A method for repairing a defect in a tissue of interest
included in a subject produces a volumetric image showing a
defective portion, which includes the defect, and a non-de-
fective portion of the hard tissue of interest within the subject.
The tissue of interest is segmented from the image. A tem-
plate, having an average shape of the tissue of interest, is
warped over the defective and non-defective portions. A
shape of the implant is determined, as function of respective
shapes of the defective portion and the template. The implant
is inserted into the defective portion for repairing the defect.

In accordance with one aspect of the invention, the implant
is cast.

Inaccordance with another aspect of the invention, a mirror
of another tissue of interest, representing a bilateral mirror
image of the tissue of interest, is homology mapped. The
normative shape is determined from the mirrored other sec-
tion of tissue.

One advantage of the present invention is that it presents an
unsupervised neural network algorithm (i.e., self organizing
feature map, or SOFM) for automated and accurate 3D sur-
face segmentation, the latter being a necessity for computer
generation of cranial implants, diagnostic cephalometrics and
image guided surgery.

Another advantage of the present invention is that user
interaction in the SOFM algorithm is limited to determining
which segmented surfaces represent the anatomy desired by
the user.

Another advantage ofthe present invention is that it rapidly
assembles automatically segmented, and anatomically valid
(i.e., no correction required), surfaces into a surface of inter-
est for rendering of 3D surfaces found in volume images.

Another advantage of the present invention is that it saves
time over manually identifying each pixel or currently avail-
able semi-automatic methods.

Another advantage of the present invention is that it locates
continuous surfaces, even in areas of thin structure or imaging
artifact (e.g., metallic artifact in x-ray or CT).

Another advantage of the present invention is that it com-
bines spatial and intensity information to track 3D surfaces
for segmentation.

Another advantage of the present invention is that it pro-
vides a means for anatomically valid segmentation (because
3D surfaces are tracked oblique to the scan plane, irrespective
of patient pose (orientation of scan planes are determined
relative the patient anatomy) in the scanner).

Another advantage of the present invention is that it pro-
vides a warping method that gives precise, accurate and effi-
cient ridge curve-based template registration for extraction of
a parameterized surface.

Another advantage of the present invention is that a fitted
template allows matching of mirrored (filling defect with
right or left opposing side data) or average (normative) sur-
faces, and production of averages. The template establishes
the homology for these three types of surface matching (i.e.,
mirroring, one-to-one fit, averaging).

Another advantage of the present invention is that it pro-
vides a reduced time for the warping method that is largely
due to an automated (simulated annealing) search for ridge
and tiling curves in the volume image.

Another advantage of the present invention is that it pro-
vides faster and more reproducible and, consequently, more
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reliable automated ridge and tiling curve fitting, especially for
internal tile points which were previously generated from an
error map between an ideal surface and the true surface.

Another advantage of the present invention is that it pro-
vides a new basis for determining tiling curve and internal tile
point location by establishing more reliable homology map-
ping of these features.

Another advantage of the present invention is that it pro-
vides a template fitting and surface averaging method that
will work well on the entire external surface of the body, as
well as many internal organs.

Another advantage of the present invention is that it
encodes the entire surface as series of B-spline space curves,
including the internal tile points.

Another advantage of the present invention is that all sur-
face operations (e.g., registration or averaging) may be
accomplished with series of homologous space curves, rather
than whole surfaces, thereby allowing for computationally
less expensive serial or parallel processing of space curve
sets.

Another advantage of the present invention is that it
improves the homology assignment of both tiling curves and
internal tile points through new surface extraction techniques.

Another advantage of the present invention is that it uses
average 3D surface images to model surfaces in patient
images for rapid prototyping of prosthetic implants.

Still further advantages of the present invention will
become apparent to those of ordinary skill in the art upon
reading and understanding the following detailed description
of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may take form in various components and
arrangements of components, and in various steps and
arrangements of steps. The drawings are only for purposes of
illustrating a preferred embodiment and are not to be con-
strued as limiting the invention.

FIG. 1 illustrates a subject being imaged using an imaging
device in accordance with the present invention, and FIG. 1A
illustrates a bone of interest according to the present inven-
tion;

FIG. 2 illustrates a flowchart according to the present
invention;

FIG. 3 illustrates a local negative feedback which excites
neuron drop off allowing coordinated input of simulated neu-
ronal field to a neural network;

FIG. 4 illustrates event inputs to a Network;

FIG. 5 illustrates a current implementation of a SOFM
neural network configuration shown as flow of event space
image element input to processor layer of neural network;

FIG. 6 illustrates Gaussian and Zero crossing curves;

FIG. 7 illustrates processor network configurations accord-
ing to the present invention;

FIGS. 8 and 9 illustrate flowcharts of the segmentation
process;

FIG. 10 illustrates multiple cluster back-projection from
map nodes;

FIG. 11 illustrates a SOFM-based image segmentation and
surface generation interface;

FIGS. 12A-12E illustrate a feature cluster map, back pro-
jected pixels and triangulated surface rendering; FIGS. 12A
and 12B display the resulting triangulated surface rendered
soft tissue face and skull. FIGS. 12C and 12D present the
voxel back projection from the selected feature cluster nodes;
FIG. 12E presents the feature cluster map;
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FIGS. 13A and 13B illustrates a self organizing feature
map formation process in which an initial random processor
location evolves into the intended grid-like structure as order-
ing is obtained by the neural network;

FIG. 14 illustrates both sessions of manual and SOFM
segmented surfaces for skull surfaces;

FIG. 15 illustrates both sessions of manual and SOFM
segmented surfaces for soft tissue face surfaces;

FIGS. 16A and 16B illustrate plots of accumulated difter-
ences across all five data sets per slice the soft tissue face
surface and the skull surface, respectively;

FIG. 17 illustrates orthogonal projections of 2D images;

FIG. 18 illustrates a new ridge curve-based deformable
template wireframes superimposed on a soft tissue face
graphical manifold, with Type II landmarks, ridge curve arcs,
and tiling curves indicated;

FIGS. 19A and 19B illustrate Type II landmarks of the soft
tissue face and boney skull templates;

FIGS. 20A and 20B illustrate a CT slice highlighting seg-
mented surface voxels of interest which are indexed to verti-
ces (points) in an adjacent rendered manifold surface;

FIGS. 21A and 21B illustrate a candidate wireframe prior
to the warp at lower left and the result of the thin plate spline
warp of the wireframe onto the Type 1I landmarks, respec-
tively;

FIG. 22A illustrates a space curve  from a sweeping plane
positioned at each control point, with tangent vector’, along a
normal section of segmented voxel surface *;

FIG. 22B illustrates a surface normal curvature ** in direc-
tion !, where *» attains principal curvature values “' and *;

FIGS. 23 A and 23B illustrate a plane constructed from the
two endpoint landmarks and an object’s center of mass;

FIG. 24 illustrates a trace along the candidate template’s
control point to the image surface;

FIG. 25A illustrates a cross section on the top of the skull
and tiling curve control point search planes intersecting that
image surface;

FIG. 25B illustrates a series of search plane iterations;

FIG. 26A illustrates rotating search planes;

FIG. 26B illustrates search planes for one ridge curve
arrayed along a warped ridge curve-based deformable tem-
plate space curve;

FIG. 26C illustrates a final ridge curve registration found
by the simulated annealing algorithm;

FIG. 26D illustrates a candidate tiling curve and its asso-
ciated search planes;

FIG. 26E illustrates the fitted control points;

FIG. 27 illustrates an entire final ridge and tiling curve
wireframe superimposed on the image surface;

FIG. 28 illustrates a flowchart for minimizing the cost
function;

FIG. 29 illustrates a temperature cooling schedule from an
initial temperature 100 to a final temperature, ~*°;

FIGS. 30A, 30B, and 30C illustrates an overview of aridge
curve-based deformable template registration process in
SASE;

FIG. 31 illustrates three orthogonal projection views show-
ing direct differences between two surface extractions;

FIGS. 32A and 32B illustrate the soft tissue face surfaces
and boney skulls, respectively, obtained via different methods
versus the toolkit on the right side;

FIGS. 33A and 33B illustrate color coded difference
images of the skull and soft tissue face surface extraction
comparisons with the segmented voxel surface and color
coded difference images of SASE skull and soft tissue face
surface extractions, respectively;

FIGS. 34A and 34B illustrate a tile point density;
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FIG. 35 illustrates the toolkit and SASE surface extrac-
tions;

FIG. 36A illustrates an alignment of u and v internal tile
curves in a 4 sided tile;

FIG. 36B illustrates an alignment of u and v internal tile
curves in a 3 sided tile;

FIG. 37A illustrates a soft tissue face ridge curve-based
deformable template definition;

FIG. 37B illustrates a boney skull deformable template
definition;

FIG. 38A illustrates a translation of two shapes into a
shared two dimensional common coordinate system;

FIG. 38B illustrates scaling adjustments between the two
shapes;

FIG. 38C illustrates the rotation, in order to obtain the
Procrustes distance (square root of sum of squared) between
homologous point landmarks pairs: A ... D,a...d;

FIG. 39 illustrates a space curve averaging procedure;

FIG. 40A illustrates a soft tissue face average surface gen-
eration;

FIG. 408 illustrates a skull average surface generation;

FIG. 41A illustrates a soft tissue face surface average com-
parison of various methods;

FIG. 41B illustrates a boney skull surface average com-
parison of various methods;

FIG. 42A illustrates a surface average tile-by-tile color
coded error maps for skull and soft tissue face surface extrac-
tions;

FIG. 42B illustrates an SSA surface average tile-by-tile
color coded error maps for skull and soft tissue face surface
extraction;

FIG. 43 A illustrates a tile point density for soft tissue face
average;

FIG. 43B illustrates an SSA method tile point density;

FIG. 43C illustrates a boney skull surface average;

FIG. 43D illustrates an SSA method skull tile point den-
sity; and

FIG. 44 illustrates an inter-method average surface conti-

nuity.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

With reference to FIGS. 1, 1A, and 2, a subject 10, or
patient, is imaged using an imaging device 12 in a step A.
Preferably, the image is a volumetric image obtained using a
computerized tomography (“CT”) scanner according to a
preferred protocol. However, other images, obtained using
other imaging techniques (e.g., magnetic resonance) are also
contemplated. Once the data is captured from the CT scanner
12, it is stored in a processor 14 (preferably, a transportable
storage medium) in a step B (although it could be transferred
over a network). Then, the processor 14 segments the data in
a step C for extracting a region of the image including a target
tissue (e.g., liver, lung, or hard tissue such as bone) 16 of
interest within the subject; the extracted region 16 includes
two (2) portions (i.e., one portion having a defect 18 and one
portion 20 without the defect). Preferably, the non-defective
portion 20 substantially surrounds the defective portion. An
external surface of the extracted region 16 of the image is
mapped in a step D. A decision is made in a step E whether to
register the mapped data of the non-defective portion of the
extracted region to a memory device in the processor 14,
which includes normative (average) data for various bones as
a function of various factors (e.g., race, sex, age, etc) of the
subject. If the data is transmitted to the memory device, the
data representing points on the mapped surface of the non-
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defective portion of the extracted region are incorporated into
averaged data for the respective bone based on the various
factors of the subject in a step F.

After the image is segmented and mapped, a template 24 is
superimposed in a step G, to an external surface of a norma-
tive shape of the target tissue 16 (i.e., without the defect 18).
Preferably the template is superimposed via warping. How-
ever, a best fit process is also contemplated. The template
specifies a “seated” edge, which is fixed to the subject (pa-
tient), and the remaining surface shape, which is not affixed to
the subject.

It is to be understood that the normative shape represents a
desired or average shape of the target tissue. Preferably, the
normative shape is determined in a bilateral structure from a
substantially mirror image of the target tissue (e.g., a defect is
present in a left side of a skull and complete data is available
for a right (control) side of a skull). However, if too much of
the target tissue is missing on the affected side, or the defect
crosses the midline in a way that prevents establishing the
midline, appropriate normative average surfaces (which, as
described below, are already homology mapped) are used. In
this case, the normative average data is brought in and regis-
tered to the homology mapped normative surface surrounding
the defect. Once the template is warped, points on the tem-
plate are mapped, in a step H, to points on the external surface
of the normative shape of the bone of interest 16.

A shape of an implant 26 to be “dropped in” the defect 18
is determined, in a step 1, as a function of a difference between
the mapped points on the external surface of the target tissue
and the external surface of the template. The implant 26 is
seated (fit) in the defect 18 of the target tissue 16 ina step J. A
fit of the implant (seating and shape relative to surrounding
anatomy) is analyzed in order to produce an image descrip-
tion of the best shape for the implant on computer, not manu-
ally. That image description is saved in industry standard
format, such as stereolithography (STL), and printed on a 3D
rendering device (e.g., stereolithographic printer). The fit is
then accomplished using a tapering scheme based on the
seating strategy and space available for the implant.

If the implant is not produced in biocompatible material, it
is cast in an implantable material. It is to be understood that
the present methods work with inert casting materials (e.g.,
bioplastics such as Polymethymethacrylate) or future tissue
engineered materials.

A stereolithography manufacturing method is contem-
plated for forming the either the implant master shape or the
actual implant.

1. Segmentation

As described below, the step C of segmenting the image is
preferably executed using self organizing feature maps
(“SOFM”), which are used for computationally encoding
neural maps.

The SOFM incorporates a modified Hebbian rule. The
resulting mapping of data ordering resembles observed neu-
rological patterns. Since then, the SOFM has found wide-
spread use in many practical engineering applications. The
SOFM derives primarily from observations of two biologi-
cally equivalent computational hypotheses defined as:

(1) The Hebbian Rule: “A synapse is strengthened or sta-
bilized when pre- and post synaptic activations are corre-
lated.” Change in synaptic strength is defined as:

S 1 =5A0M

M

where s, is a connection strength at time t, 1| is an output (IP in
FIG. 4) equal to s,xE, & is an input pattern, and o is a factor, a
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user-selected value, that is made to decrease for each itera-
tion, to ensure it reaches zero. This, in turn, ensures appro-
priate synaptic strength formation and system stabilization.

(2) Local Feedback: Each neuron laterally influences the
neighboring neurons to either an excitatory or inhibitory
state. This results in a competition which enables the forma-
tion of a map. FIG. 3 is an example of an excitation function.
The SOFM based 3D surface segmentation presented here
extends the concepts of ordered feature maps. In the neural
network, each normalized input feature vector is scaled or
weighted by multiplication with a user-assigned constant
vector. This process begins with an event generation step,
which results in a pattern E={E,, &,, ..., E,} thatis sent to a
“resonator” from which potential connection are made. The
weights determine feature connection strengths. The scaling
results in a vector xi=c*F, with ¢ the feature connection
strengths and F the input vector are shown in FIG. 4. Proces-
sor weights adapt to input stimulation and in so doing the
neural network organizes an ordered map.

The unit 1 has connection weights, [, , L5, - . ., 1;,, Which
are expressed as a column vector mi=[i,,, [, - . - , 1t,,,]%. The
discriminant function of a unit is defined as:

@

s
i =Z wy€;=ml€
=

For unit k after selecting a winner from each iteration, the
weight vector is updated as:

(D) + - (€ = mi(D)
[l (@) + - (€ = mi@)yll

mit+1) = @

where t is the discrete point at which events are sequentially
sent to the network. ||o||,-is the normalization process, ensur-
ing the weight vectors are bounded. The network’s selectivity
improves as more input vectors are presented. Network for-
mation requires no initial correlation or order between any of
the voxel input data elements. Hence, no initialization or
operator assistance is required during feature cluster forma-
tion. Iterative steps lead array units to represent the topologi-
cal order of different combinations of input image features.

1. Voxel Input Data Elements (VIDE)

One dimensional feature maps with voxel intensity input
data have been extended to include six (6) voxel input data
elements (i.e., patterns) in a two dimensional processor and
feature map for interactive surface segmentation. The image
feature vector is generated for each input voxel, its elements
are: (1) A distance from volume centroid to voxel location in
three dimensional space; (2) The histogram equalized or nor-
malized voxel intensity; (3) The Gaussian smoothed voxel
intensity; 4) The difference of Gaussians; 5) The Laplacian
zero crossings; and, 6) Invariant image moments.

The calculation of VIDE parameters is explained below. In
general, intensity information is incorporated to provide
voxel differentiation. Spatial distance parameters provide
positional information, such as where a surface is located.
Gaussian parameters used in self organizing map-based seg-
mentation provide additional adaptive qualities to the 3D
surface detection operation by smoothing artifact noise and
compensating for scan protocol sequellae (resolution, pose,
and beam strength). The “difference of Gaussian™ parameter
extends smoothing across a detected surface by introducing
effects from local and distant voxels (i.e., the maximum dis-
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tance between voxels is that of the surface detected but not
elsewhere in the image volume). The “zero crossing” param-
eter provides transitional information important for some
kinds of edge detection. The “moment invariant” parameters
provide a positional and scale invariant signature of a surface
in each region of the image volume; a computationally inten-
sive parameter, moment invariants are initially set to 10
weight (Table I), and raised here only in small, user-defined,
regions (e.g., the margins of thin structures) for fine tuning.

This set of voxel input data element vectors have normal-
ized values of: spatial location via distance transform, voxel
density with respect to nearest neighbors via Gaussian and
difference of Gaussians, and boundary changes captured via
Laplacian zero crossings. The two Gaussian input elements
prevent feature inclusion of the spurious background noise
commonly associated with 3D images. These parameters are
computed during a preprocessing and feature-extraction pro-
cedure (see FIG. 5). All VIDEs are normalized to a unit range
of 0 to 1.0. This bounds the neural network output (i.e.,
second layer produced from VIDE input).

The voxel input data element vectors are defined as row
vectors F,=[E,,., V,, g, g, Z. m] with six (6) elements,
shown in Table I, where n varies from 1 to the total number of
input image voxels. The weighting factors are defined for
each element in order to prefer one element over the others.
The resultant VIDE vector is defined as:

E=KE, =K E g KoV, Kag Kag K5 Z oK ] (©)]

where K, defines the percentage of preference assigned for
each VIDE. The differential preference of input VIDE results
in associations between neural network processors and the
voxel clusters. Table 1 presents the default preferences for
each element during experiments.

A. Input element 1: Normalized Euclidean Distance (E ;,)

The radial distance from the image volume centroid is
referred to as the moment of inertia. The image volume cen-
troid is (C,, C,, C,) as determined from:

®

where V(X,y, z) is voxel intensity, d, h, w are number of slices,
slice height, and slice width. Euclidean distances are com-
puted from the centroid to each input voxel as E =

\/((X—CX)2 +(y—Cy)2 +(z—C,)*). This distance is normalized as
E BB b

B. Input Element 2: Normalized Voxel Density (V,)

This value depends on a prior choice of gray scale histo-
gram normalization or equalization via a lookup table proce-
dure. The value V,=f (V(X, ¥, Z)/|[f(V)|],,.... is calculated from
histogram mapping and normalized with the maximum value
obtained from the entire volume. The best results are obtained
via gray scale equalization.
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C. Input Flement 3: Gaussian (g)
A 3D Gaussian is defined as:

ooyt 2)(2c?) ©

Gy =73

where o defines the spread of the Gaussian curve as shown in
FIG. 6. Use of two Gaussian features allows the neural net-
work to produce feature clusters in noisy regions. Pre-com-
puted numbers are used to normalize the 3D Gaussian. A
kernel is computed from this Gaussian function with pre-
specified kernel size ranging from 2 to 10. The smoothed
voxel intensity results from the convolution of the kernel over
the present voxel and its immediate three (3) dimensional
neighbors.

D. Input Element 4: The Difference of Gaussians (g,) This
is an extension of the above Gaussian input element with dual
0,, 0, values, shown separately in FIG. 6. This is defined as:

Gx 321G &3 2)-GE o) M

where

e (22 ech)

Gi(x, y,2) =
1%, ¥, 2) pre=

and G(x, y, z) is defined in equation 6. As in Equation 6,

pre-computed numbers are used to normalize this Gaussian

function, A kernel is computed from G /(x, y, z) and g, is (2x)

obtained by convolving this kernel with the present voxel and

its immediate neighbors (i.e., the 6 directly adjacent voxels).
E. Input Element 5: Laplacian Zero Crossing (Z,.)
Laplacian Zero Crossings are presented by as:

Z(x 32V Z. ) +ZV)+Z.@ (®)

this value is obtained from the Laplacian computed in each
axis in the image volume, where:

—-d -d

2
Z Z V(x,y+n,z+m)-sgn(n)]/L] s

=d m=d

Ze(x) = [

-d -d 2
Z(= [[Z SVt p.y. z+m)-sgn(n>] / L] :

m=d m=d

2
Vix+p, y+n, z)-sgn(n)]/L]

w33

m=d m=d

and, where sgn(n) is the sign of the scalar x. L is equal to
(2d+1)d where d is a predefined length; and V is voxel inten-
sity.

F. Input Element 6: Moment Invariant (m,)

The moment invariant is an image statistic that is invariant
to rotation, translation, and scale in a region. Moment invari-
ants are derived from the definitions of moments, centralized
moments, and normalized central moments. The image
moments are defined as:

®

Mpgr= 2 30 WY f(5 3, 2)
x y oz
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where p, q, re {0, 1, ..., 1}. If f(x, v, z) is a piece-wise
continuous function with bounded support in a 3D image,
then the bounding is set by an mxxxo voxel array. It is posi-
tioned at the selected voxel and bounded by length 1. The
centralized moment p,,,, is defined as:

=3 S S TP f 3. D) a0
x oy oz

where X=m, ,o/Myg0, Y=g ;0/Mene Moo /Mg (i-€., centroid
coordinates) at the point (X, y, ) is called the image region
centroid. The normalized central moment is defined as:
Npgr=Mpgr/Hooo” Where y=(p+q+r)/2+1. From the normalized
central moments, three (3) orthogonal invariant moments are
defined as:

17200 M020"Mo02>
92721, 10Mo11M1o1s

an

These three orthogonal moment invariants were selected
because they are irreducible and distinct. When approaching
tissue boundaries the moment invariants may provide infor-
mation that complements the zero crossing data. The strength
of'the zero crossing 3D surface signal is expected to be more
dependent on the object’s pose (i.e., relation of surface ori-
entation to scan orientation) than the moment invariants.

2. Back Projection of Feature Clusters

In the preferred embodiment, the SOFM neural network
utilizes 4x4 to 16x16 processor network configurations in
either a rectangular or a hexagonal grid formation (see FIG.
7). In a rectangular grid, each processor has four connections
to its neighbors. In a hexagonal grid, each processor unit has
six connections to its neighbors. The input layer, translates
each voxel into a vector containing the VIDEs defined in
Equation 4. The input layer has direct connection to all pro-
cessors in the formative network configuration and is associ-
ated with a weight as shown in FIG. 5. A flowchart of the
complete surface segmentation process is shown in FIG. 8.

A. Preprocessing to Remove Background Noise and Head
Holder

The head holder and background noise are separated from
the head object in a two step procedure. First, a grayscale
threshold is manually set; next, a volumetric region growing
method is applied. This removes voxels associated with the
head bolder, background noise, and most metallic artifact
outside the head; it also limits the voxels sent to the neural
network to those relevant to the 3D surfaces internal to the
head.

B. Randomization of Input Voxels

The randomization of the VIDE vectors in the input event
space is necessary in order to obtain an ordered map. Each
voxel intensity in the image volume is stored along with its
position (i.e., X, y, z coordinates) in a randomly selected entry
in a hash table (i.e., a register queue (length N). The random
position R, in the hash table is computed as R,=hashTable
[lengthxrandNumber], where the hash table is initialized
sequentially from O to the total number of voxels N. The
random number is generated in a range between 0.0 and 1.0.
The length of the hash table starts with value N. Subsequently,
N decrements for each position computed and is swapped
with entries for that position’s current length in the hash table.
This procedure ensures randomization of feature vectors in
the input element event space and, subsequently, the map

2 2 2
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formation by adapting weights in the self organization pro-
cess. The position of the intensity in the hash table entry is
replaced during map formation with the processor identity;
processors represent feature clusters of potential anatomical
surfaces.

C. Self-Organizing Feature Map Algorithm

With reference to FIGS. 8 and 9, weights are randomly
initialized around 0.5£x, xe {0.0, . .., 0.1}, in a step K, with
default initial learning rate and neighborhood excitation
parameters, set by the user.

A pattern &, a VIDE vector, is presented, and the network
output is evaluated in a step L.

The unit {i, j} with the minimum output is selected and
designate as a winner: [P, | . =[E-W, ||, ina step M.

Weights are updated, in a step N, using a learning rule
where neighbor excitement levels are a function of self and
neighbor excitation rates

W A+ D) er =W (D40 (0 [T W, (D)],
{ Winn () + B ;@) - [§ =W, @], ... ,if ((m, n) € N; (1)
Win(t+ 1) = )
Wonn(D)

where N, (t) is a neighborhood of {i, j} at time t; o, (1), the
learning rate for the winner processor; f3, (1), is the rate at
which its excitation influences its neighbors.

The value of @, (t) and B, (t) is decreased, and the neigh-
borhood, N (t) is shrunk in a step O.

Steps K-O are repeated for all the VIDE vectors:

Wij=Iw,waws owsli=1,2,... .1 j=1,2,... , Iy

Teid ... 16} Qi; :||/<F,;—W;,j||
£ =xF,

nell ... NINQ; ;o j(Da; j(DF; (DB, j @)y j(0id € {0 ... 255}W; ;N.

3. Interactive Image Segmentation and Rendering

The SOFM 3D surface segmentation program integrates
the SOFM algorithm, volumetric image reading, slice image
display and editing, and graphical surface rendering of output
feature cluster voxel data (i.e., obtained 3D surfaces).

The 2D SOFM processor map displayed in the window
(FIGS. 10, 11, and 12) allows the user to select voxel clusters
associated with each processor. Clicking on a displayed node
activates back projection of the associated voxels to a 3D
graphics window. Successive feature clusters associated with
desired surfaces may be accumulated, saved as a group, and
back-projected to the graphics display (FIG. 10). At this stage
(i.e., selection of map nodes) no surface rendering is pro-
vided.

Our tests were with 3D head CT data. The voxel display of
these data allows the user to quickly identify the processor
nodes associated with skull, soft tissue face, oral, or cervical
vertebral surfaces. After having identified the group of pro-
cessors associated with the desired 3D surface, the voxels are
triangulated for 3D surface rendering.

A. Self Organization (Ordering) Process

During the automated image segmentation process an
ordering, from an initially random configuration of proces-
sors to a state of equilibrium of the self organizing feature
map must occur. The weight vector of a processor is given by
W, =W, W, W; ... we], wherei=1,2,...,1,j=1,2,...,Tand
IxI, is the number of processors assigned to the network
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configuration, where le {4 . . . 16}. A maximum of 256
processors were chosen, a condition which insures that the
identity of a processor is always found in the range of 0 to 255.
This allows each processor to be stored within one byte,
thereby saving memory for further computation.

A VIDE is generated from each voxel in the input volume
event space hash table and is sent to the processor layer. Once
a processor captures a voxel, the cluster identity is placed
back in the hash table register replacing the input voxel inten-
sity cell datum. Later it will be displayed as part of a surface
with all voxels belonging to this cluster. Voxel intensity infor-
mation is obtained from the original input image volume via
corresponding hash table registers. A processor’s computed
output is:

Qij:HKFn,_ WUH (12)

where E=F,"is a VIDE vector,ne {1 ... N} and N is the total
number of voxels. Among the processors a winner is identi-
fied. The distance measure Q, ; determines if it is lower than
the initially chosen value. If so, the processor identity changes
from its initial state; the new processor will continue to claim
the voxel as long as no other processor claims it is the “win-
ner.” The winner successively strengthens its weight vector
by a fraction of the input element values sampled by the
a, (1), a self excitation parameter. The value of o, (1) is set
and then decreased successively, eventually resulting in no
change to the weight vector. This ensures that the network
will reach an equilibrium. Another parameter, f3, (t) influ-
ences neighborhood processor excitation and determines how
much the winner can excite or inhibit its neighbor’s weights.
B. (1) is assigned a fixed value that decreases over time to
avoid wide fluctuations in the organization process. Using
neighborhood Gaussian function curves (See FI1G. 3), defined
by the parameter v, , the number of neighboring processors is
successively decreased. This number is initialized with a
default value at the beginning. The “winner” processor takes
the current input voxel to its cluster along with its spatial
coordinates. This update replaces the processor’s identity, id
€{0...255}, with the voxel density currently in the register.

Prior to the mapping process the weight vectors, W, ; of
each processor, are initialized with random values. Therefore,
the initial topology of the axis spanned by connection
strength between any two of the VIDE elements is unorga-
nized. This is shown in FIG. 13A. The processor’s physical
connections remain constant throughout the process, (i.e.,
processor 1’s connections to processor 2 remain the same).
However, the mapping topology with respect to each proces-
sor’s connection strength changes throughout this process.
The random starting topology, shown in FIG. 13A, is drawn
by plotting each processor’s weight vector, chosen two
weight elements at a time, onto two dimensional axes. The
initial pattern has no meaning, however the final pattern
obtained presents processors (feature clusters) containing
voxels representing 3D surfaces and similar 3D surfaces will
be shown in the same SOFM map region. We have chosen
voxel intensity and Fuclidean distance and their correspond-
ing members in processor weight vectors to plot the map
topology in FIGS. 13, 10, and 11.

After % input VIDESs are fed through the input layer, pro-
ducing each processor’s final weight vector, the network
adopts, approximately, the original “flattened” processor grid
topology. The axis of the grid is spanned by processor con-
nection strength values. This grid is a 2D projection image of
the feature cluster VIDE hyperspace. An example is seen in
FIG. 13B.

SOFM feature vector adaptation results from two basic
mechanisms: (1) Identifying a “winner” and allowing it to
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modify it’s connection strengths; (2) allowing the winner to
selectively excite/inhibit its neighbors. The first mechanism
ensures connection strengths that reflect input event values.
The second mechanism ensures that related processors, espe-
cially those representing anatomical surfaces, are mapped
adjacently. The observed surfaces, displayed as point clusters
from a set of neighboring processor nodes, illustrate the sec-
ond mechanism in FIG. 10.

The voxels associated with the winners are clustered and
classified as separate groups. These clusters are identified
through the processor’s identity, a unique value which is
stored in the hash table during the self organization process.
The resulting clusters capture continuous anatomical surfaces
[FIG. 10] that exist in the 3D image volume as an intrinsic
model of the VIDE event space. This approach differs from
physically based models (prior information) or user-defined
(algorithm assisted or manual selection) segmentation meth-
ods that rely on information extrinsic to the image volume.
Our method adaptively locates surfaces captured in the image
volume using voxel data intrinsic to the image volume. We
involve the user to verify and determine the surface identity.
This introduces supervised learning to the unsupervised neu-
ral network algorithm.

B. Surface Rendering

Two different types of surface rendering methods (i.e.,
triangulation of voxels associated with selected feature clus-
ters) have been implemented. The first approach is primarily
a contouring of the outermost voxels. Assuming the volume
contains a thin boundary surface, all cells on the surface are
classified as useful vertices. Each slice is divided into four
quadrants, and each quadrant is swept by 256 lines from its
outer most volume boundary to the slice image centroid. In
each ray, the first encounter with the boundary surface is
defined as a boundary vertex. The remaining sweeps obtain
subsequent vertices in each slice, resulting in a closed curve
that traverses all of the detected slice vertices. Since the fine
sweeps are produced at half degree angular rotation intervals,
the points generated are aligned in the correct neighborhood.
Next, four sided polygons are generated from all quadruples
of'neighboring vertices in a pair of consecutive closed curves.
These polygons are degenerated to two triangular faces. This
results in a complete triangulated surface of the segmented
image object. This procedure is extremely fast and well suited
to display simple surfaces such as the soft tissue face (see
FIG. 12A). However, views of objects with complex topol-
ogy, such as the skull, provide unsatisfactory results.

A second approach is taken to rendering complex surfaces
such as the skull. We used a known method of decomposing
volumetric data into tetrahedra. This approach takes two adja-
cent slices and traverses neighboring voxels eight at a time,
treating them as a tetrahedron. The decomposition of tetrahe-
dra produces the oriented cycles necessary to represent trian-
gular faces of an isosurface. This approach yields, for
example, a skull surface (see FIG. 12B). We also compared
the Doi and Koide tetrahedral decomposition to the marching
cubes algorithm. Both algorithms use bi-linear interpolation
to compute partial voxel values. Computation of a complete
skull surface rendering took approximately 3 to 4 minutes as
opposed to 2 to 3 minutes, on an SGI Octane workstation.

C. Combining Multiple Surfaces and Filling Holes

The user can combine the feature clusters associated with
multiple SOFM processors. If unexpected holes are seen in
the surface, perhaps due to partial voluming “drop out” of thin
structures, the volume image region immediately around the
missing area may be selected as a new region of interest
(ROI). A new high resolution processor map of voxel clusters
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is generated for this zoomed-in RO], allowing careful surface
assembly in regions of thin bone or skin.

D. Partial Volume Error

This error results in surface “drop out” and is a well known
cause of surface inaccuracy in 3D CT visualization of thin
bone segments. The problem becomes more difficult where
bone voxel intensities are reduced to tissue levels. Region
growing and manual intensity thresholding techniques for
isosurface generation cannot overcome these errors. We find
that selecting a region presenting thin bone segments and
assigning higher preferences to VIDEs 5and 6 (i.e., Laplacian
zero crossing and Invariant image moments) allows a local
SOFM map to capture more of the desired voxels represent-
ing surfaces formed by thin bone. For example, the compu-
tationally expensive moment invariant was set at 10 weight-
ing on this initial pass, then elevated to 40-60% in user-
defined regions around thin bone structures such as the infra-
orbital foramina and orbital walls (FIG. 14).

4. SOFM Precision Tests and Results

The SOFM program was tested with five 3D CT data sets
(B2537, B2621, B3037, B3095, B3195) provided by a recall
of subjects. All subjects are above 60 years in age, female,
have dental fillings, and often have large oral prostheses (den-
tures). One operator (AM) segmented all the images twice by
two methods: (1) slice-based methods (i.e., intensity thresh-
olding, manual pixel selection, and 2D and 3D region grow-
ing) in the AUTO program, and (2) Self Organizing Feature
Map. Both the slice-based and SOFM tools provide orthogo-
nally reformatted views of the original image and segmented
pixels. More than a day passed between each segmentation
session. Intra-operator variance (precision), using either seg-
mentation method, was measured between the two segmen-
tation attempts. In manual segmentation, skull and soft tissue
face segmentations were separate activities. In SOFM experi-
ments, the same ordered map was used to produce the skull
and soft tissue surfaces in a single attempt.

The original, unsegmented CT data sets are 512x512x115
in dimension with 1.904 mm slice thickness and 0.5 mm pixel
resolution. This scan protocol was chosen to provide accurate
source data for boney skull and soft tissue face isosurface
images. This data was reduced to 256x256x115 in dimension
with 1.904 mm slice thickness and 1 mm pixel resolution.
This resolution is sufficient in terms of the resulting surface
segmentation and saves memory resources on the computer.

Five measures were used to determine both intra-operator
within-method variance and between-method variance in the
resulting segmented images. The former measures how
reproducible the segmentation is; low variance implies high
precision. The latter measures how different the results of the
two methods are. We expect the differences to be local to
regions of thin structures or metallic artifact where qualitative
inspection suggests the greatest benefit from SOFM segmen-
tation. These five measures are: (1) Visual comparison of the
skull and soft tissue face surfaces obtained; (2) Difference of
the overall volume of the segmented image; (3) Two dimen-
sional difference images computed slice by slice for each
slice image within the volume; (4) Three dimensional differ-
ence images viewed from three orthogonal eye points; and (5)
Procrustes superimposition of manually located, highly reli-
able, single point anatomical landmarks. The last measure is
similar to a qualitative visual determination of the complete-
ness of anatomical features seen on the segmented surface.
Clearer features will result in more easily, and more repeat-
ably, detected anatomical landmark coordinates by trained
workers.
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A. Test 1: Visual Comparisons:

The left hand side of FIGS. 14 and 15 show both manual
slice-based segmentation attempts. The right hand side shows
both SOFM segmentation results. SOFM segmentation of
soft tissue face recovers thin tissue structures around the
nostrils, lips, and ears, producing an improved image. There
is also dramatic improvement in reducing the effect of the
metallic (dental filling) artifact around the lips. Note the vari-
able posterior sagging of inframandibular soft tissue due to
the affects of gravity on the supine individual within the head
holder. SOFM skull segmentation (FIG. 14) improves areas
of thin bone around the infraorbital and mental foramina and
the thin posterior and medial orbital walls. These visual
results indicate that the slice-based segmentation does not
allow as effective a search for these surfaces.

B. Test 2: Volume Differences:

Table II presents volumetric differences between the soft
tissue face obtained between an average of multiple attempts
and each attempt in both manual and SOFM methods and
between the two method averages. Table 111 presents the same
data for the segmented skull image volumes. The difference
image volumes were computed by multiplying the total num-
ber of voxels in each segmented image by voxel volume
(1.904 mm3). SOFM segmentation results show less differ-
ence between sessions. Given the additional detail it is not
surprising that in comparison with manual slice-based seg-
mentation, SOFM segmentation results in an average 0f3.9%
more volume for skull segmentation and 0.5% more for soft
tissue face segmentation. The higher difference for skull seg-
mentation likely indicates greater reduction of partial volume
error.

C. Test 3: 2D Slice Image Difference Data:

This test presents 2D slice by slice difference profiles for
each image volume using either segmentation method. These
difference profiles result from calculating the absolute difter-
ence between corresponding pixels in the homologous seg-
mented slices. The accumulated difference across all five data
sets are plotted per slice in FIG. 16A for the soft tissue face
surface and FIG. 16B for the skull surface. Regions where the
slices contain thin bone and dental filling artifact require
manual pixel selection during manual slice-based segmenta-
tion in AUTO. These are areas where the user must make
many decisions that are not well replicated on subsequent
segmentation attempts. Manual slice-based segmentation
results in higher intra-operator variability. Regions with thin
soft tissue or bone, or dental artifact, contributed most to the
difference plots (FIG. 16) between the slice-based manual
and SOFM segmentation results, this suggests that the latter
was more the reliable method.

D. Test 4: 3D Difference Images:

This test consists of 3D difference images computed
between the volume image resulting from the two segmenta-
tion methods. The 3D difference images, seen in three
orthogonal projections of 2D images in FIG. 17, graphically
illustrate the affect of highly variable human decision making
in the regions of metallic artifact and thin structures during
manual slice-based segmentation. Note that thin areas of the
skull surround the pneumatic sinuses (i.e., frontal, maxillary,
ethmoid, sphenoid, and mastoid). Areas of thin soft tissue
face structures (especially, the nostrils, eyelids, ears, and lips)
are more fully extracted by SOFM than with slice-based
manual methods.

E. Test 5: Anatomic Landmark Localization:

The user was asked to pick reliable anatomic landmarks
twice on the soft tissue face and skull surface segmented
either manually or by SOFM. These landmarks include 21 on
the soft tissue face surface (Table IV) and 26 on the skull
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surface (Table V). The error found between landmark loca-
tions in these two sessions was determined via Procrustes fit.
The error reported here is the average value across all 5
superimpositions. We contend that the improved quality of
the imaged surface, especially in areas of artifact or thin
structures, reduces intra-operator variance (i.e., raises preci-
sion) between landmarks picked on two attempts of either the
soft tissue face or skull surfaces segmented via the SOFM
method; the less ambiguous SOFM surface renderings allow
our skilled operator to place these landmarks more precisely.

F. Time of Segmentation:

Skull and soft tissue face segmentation sessions (AM) were
reduced from approximately 3 to approximately 0.5 hours. In
either method, the majority of time is spent correcting dental
artifact or partial volume error. We are aware that the skull is
most often segmented at the CT console by intensity thresh-
olding alone. This method may save time but results in the
poor segmentation of thin structures or those near metallic
artifact.

1I. Warping

As described below, the step G of warping the template to
an external surface of a normative shape of the bone of inter-
est is preferably executed using a Simulated Annealing-based
Surface Extraction (SASE) process.

In order to save time, improve precision (repeatability),
and increase accuracy of the extracted anatomical surface, a
ridge-curve based deformable template superimposition
strategy combines simulated annealing of a ridge and tiling
curve wireframe and subsequent surface normal based iden-
tification of surface tile points. The annealing algorithm
searches the volume image and displays the result to the
operator on a graphical manifold rendering of the surface of
interest. Unlike energy minimization algorithms, which
require a good initial parameter estimation to avoid converg-
ing to a misleading local minimum, annealing methods
exploit stochastic search methods to locate a global mini-
mum. Several stochastic methods form a basis for simulated
annealing. Space curve fitting of 3D surfaces is a goal not
uncommon in the field of computer vision. It is merely object
recognition followed by shape registration.

B-spline space curve encoding of labeled surfaces has
application beyond surface averaging and craniometrics or
image co-registration. We seek highly accurate surface
extractions to model cranial prosthetic implants for the skull.
Homology mapped, B-spline space curve encoded surfaces
prove useful in morphometric, biomechanical, and deform-
able model assessment of many organ systems. Additionally,
parameterized surface extractions, especially of the external
body surfaces, have application in animation.

1. Ridge Curve-Based Deformable Template Creation

We chose to use B-spline surface encoding because it pro-
vides a smooth surface approximation, reduced data set, and
easier assignment of labels to various components (see
Appendix 2 for B-spline curve and surface construction). We
have re-implemented skull and soft tissue face ridge curve-
based deformable templates in this fashion. FIG. 18 shows
one of these new ridge curve-based deformable template
wireframes superimposed on a soft tissue face graphical
manifold, with Type II landmarks, ridge curve arcs, and tiling
curves indicated.

Tiling Curves:

Since ridge curves rarely intersect, additional space curves
are necessary to tile the surface with a single enclosing wire-
frame. In order to identify a unique demarcating line within a
search space we define tiling curves as space curves that: (a)
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traverse a low curvature area (i.e., flat surface); and (b) are
weighted to pass close to a plane passing through the surface
between the tiling curve end points and the center of mass of
the entire image surface (See Sections I1.2.C and I11.2.G).

Initially, we approximate tiling curves as straight lines
between endpoint landmarks. In FIG. 18, B-spline ridge and
tiling curves are indicated by dotted lines while their control
points are shown as small black cross-hatches. The Type II
landmarks are shown as large black cross-hatches.

As one draws either a ridge or tiling curve, a corresponding
B-spline curve is fit to the surface via global curve interpola-
tion to a set of control points sampled from the user drawn
space curve. The B-spline interpolated 3D points collected
are re-sampled and indexed to vertices on the graphical mani-
fold surface and assigned a control point vector, P;. In the
case of ridge curves, our resampling maintains the curvature
information along ridge curves when determining how to
space the control points. On the other hand, tiling curve
control points are equi-distantly spaced. The curve smooth-
ness, set by the operator, further determines redistribution of
control points, if necessary. Knot-vectors and knotspacing
require a B-spline interpolation function assignment for each
space curve, by the operator during the template creation
process.

FIGS. 19A and 19B display the Type II landmarks and
Appendix 1A and 1B list the non-landmark components of
the soft tissue face and boney skull templates, respectively.
The soft tissue face template consists of 56 Type I landmarks,
103 space curves (54 ridge curves and 49 tiling curves), and
44 surface tiles [FIG. 19A, Table VI]. The skull template
consists of 54 Type Il landmarks, 104 space curves (40 ridge
curves and 64 tiling curves), and 47 surface tiles [FIG. 19B,
Table VII].

2. Ridge Curve-Based Deformable Template Superimpo-
sition

A. Graphical Surface and Volume Image Input:

The 3D surface input we use results from segmented vol-
ume images. The segmented voxels are rendered as a graphi-
cal manifold. Segmentation occurs via an unsupervised neu-
ral network program. The graphical manifold is built with
sub-sampled voxels to provide an interactive context to the
operator.

The simulated annealing ridge curve-based deformable
template superimposition algorithm evaluates features found
in the volume image, not on the graphical manifold surface.
The unsubsampled volume image provides additional cues
for best locating ridge or tiling curves. The result of the search
is displayed on the graphical manifold surface where the
operator can make manual corrections to algorithmic insuf-
ficiencies. The CT slice shown in FIG. 20A highlights the
segmented surface voxels of interest which are indexed to the
vertices (points) in the adjacent rendered manifold surface
(FIG. 20B).

During loading of the graphical manifold surface data, a
3D lookup table (i.e., geometric hash-table) of spatial ™ and
curvature metrics (Listed in Table 8) corresponding to each
vertex is generated. This provides the simulated annealing
based surface extraction complete indexing between the ren-
dered graphical manifold and the source volume image.

B. Candidate Wireframe:

The first step in the Simulated Annealing-based Surface
Extraction (SASE) process is the operator’s manual location
of the Type II landmarks on the graphical manifold surface.
These landmarks attach the ridge curve-based deformable
template to the graphical manifold surface via a thin plate
spline warp. FIG. 21A shows a candidate wireframe prior to
the warp at lower left. FIG. 21B shows the result of the thin
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plate spline warp of the wireframe onto the Type II land-
marks. Some of the landmarks (large cross-hatches) are vis-
ible. Note how the candidate wireframe undulates in and out
of the surface.

C. Volume Image Features:

Simultaneous to loading of the graphical manifold data and
lookup table generation, a set of surface geometry features are
generated for use in the simulated annealing procedures. A
method is known for computing principal directions and prin-
cipal curvature values (FIG. 22) for any point on the seg-
mented image surface directly from the input volume image
data. In addition, the principal normal and tangent vectors are
derived at the same time. These latter parameters, in addition
to providing the basis for the simulated annealing process cost
functions, are also used to bound the search space in the
volume image linked to the graphical manifold surface dis-
played for the operator.

The search for volume image principal curvature normal
vectors and principal curvature tangent vectors occurs ini-
tially at a point, I, a control point found on the B-spline space
curve, defined at location {X,, Yo, Zo} to have normal vector N
on the volume image surface S defined as I(x, y, z)=1(X,,Yo,
Z,). 1 lies in the same direction as the curvature gradient (i.e.,
changing surface normals) of the surface voxel data:

VIS L L) (N=(VI/|VI]) (EQ13)

In order to evaluate the local surface curvature we consider
a space curve C from a sweeping plane positioned at each

control point, with tangent vector T along a normal section of
segmented voxel surface S (FIG. 22A). The normal vector at
any point along C is N=(n,,n,, n,). Differentiation of VI-t=0

yields surface normal curvature k, in direction t, where k,,
attains principal curvature values k; and k,. Principal direc-

— —
tions e; and e, show the path of the principal curvatures (FI1G.
22B).

On any surface, the local curvatures vary between the prin-
cipal curvatures k,; and k,. Therefore, the curvature param-
eters we use combine these measures

K=k 'k, (EQ 14)

M=Y{k +k>} (EQ15)

where K is Gaussian curvature, independent of principal
directions and M is mean curvature changes sign with oppos-
ing principal directions.

Twelve feature dimensions are used for simulated anneal-
ing registration of ridge or tiling curves (Table VIII). The 3rd
order image derivatives are obtained from image derivatives:

(EQ 16)

The Partial derivatives of H along each axis are H,, H,, H.:

Lo Do Lix Loy Loy Ly EQ 17
He= |l by hoo | Hy=| Iy by by |,
I Iyx I Ly Ly Ly
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-continued

hor hyr Lz
H, = Iyxz Iyyz Iyzz

L Izyz Lz,

Among these 27 third order partial derivatives, ten derivatives
are chosen, L., Lo Lows Loy Lows Lo Lo Ly Loss Lo,
preferring derivatives along the three axes. Essentially the
maxima of these ten third order partial derivatives provide an
indication of sharp geometric transition. A pre-determined
inter-knot spacing restricts any overlap of search space
between any two control points. The Type II landmarks are
used for ridge curve arc-separation and to anchor tiling
curves.

Features for Ridge Curve Arcs:

We use Gaussian and mean curvatures, and ten third order
partial image derivatives to obtain maximum curvature pre-
scribing control points along the surface between ridge curve
arc endpoints (i.e., Type II landmarks).

Features for Tiling Curves:

We use the same set of features to position tiling curve
control points along lines of minimum curvature. In addition,
we use a thirteenth feature, a deviation measure, d,.. It is
found between the candidate control point normal and the
nearest ray within a plane constructed from the two endpoint
landmarks and the object’s center of mass (FIG. 23). The
deviation measure helps limit the tiling curve search space so
that no boundaries overlap.

D. Initial Control Point Location:

When the template is warped to operator located land-
marks on a patient image the candidate space curves connect-
ing the Type H landmarks and their control points may not lie
on the image surface. The true surface is located using a trace
along the candidate control point normal. Thus, the initial
candidate control point is assured to be on the image surface.
FIG. 24 illustrates a trace along the candidate template’s
control point to the image surface. The annealing process
starts with the first point found on the surface as an initial
candidate control point.

E. Search Plane:

A search plane is anchored to the candidate wireframe (i.e.,
ridge curve-based deformable template) and rotates about the
axis of that point’s surface normal in the volume image. Note
that when ridge or tiling curves sit on a two sided tile bound-
ary, these cut planes rotate a full 360 degrees (FIG. 25B). The
sweep rotation about each control point normal is set to incre-
ment a default 45 degrees (operator chooses between 10 and
90 degrees). If search in one direction fails, an opposite direc-
tion search is attempted. This is important where a ridge arc is
at the surface margin.

F. Random Candidate Control Point Generation:

The principal directions constrain the search space for each
control point along the B-spline space curves. The maximum
principal curvature bounds the space in which it is profitable
to search for optimal B-spline space curve control points. The
search space for each B-spline control point during ridge
curve or tiling curve superimposition is defined from the point
normals and tangents bounded by the principal directions.
FIG. 25A shows a cross section on the top of the skull and
tiling curve control point search planes intersecting that
image surface. FIG. 25B shows a series of search plane itera-
tions.

Candidate control points are evaluated during each search
plane iteration. Search plane rotations select a randomly
located set of M (chosen by operator, default is 2) candidate
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control points for k search iterations. Random candidate posi-
tions are selected from the space curves intersected by the
search plane rotations through the image surface. Their fea-
tures (Table VIII) are computed and evaluated by the cost
function in comparison to the current candidate control point
position, &. The actual candidate locations on the image sur-
face chosen for evaluation via variables r and s using reflec-
tion coefficient parameter a:

r:( © ]-(\/(N+1)+N—1.0 EQ 18

N2

s:(L]-(\/(NH) ~1.0 EQ 19
N2

where N is the number of dimensions (i.e., number of image
features in the case presented). Randomly distributed position
vectors (1) are computed by using r and s as:

Ip=S(hrand(r),wrand(s)) (EQ20)

where S is the search space spanned by width, w, and height,
h, computed from the normal and tangent at the template
B-spline space curve control point. The rand(r), rand(s) are
the coordinates with

the search plane. Each position within the search space plane
carries a single vector for the three coordinate axes, which is
indexed to a segmented surface voxel in the volume image
space.

The probable distribution of positions are subsequently
used in finding the best ridge or tiling curve control point
candidate. The values for r and s are decreased after each
iteration:

r=r—(v/k),s=5-(s/k) (EQ21)

and successively decreased, as k the current iteration,
approaches the maximum number of iterations, k,,, .

G. Simulated Annealing Cost Functions:

The cost function evaluates the candidates for B-spline
control points intersected by the search plane via simulated
annealing. The procedure used here is based on the Metropo-
lis algorithm.

Ridge Curve Cost Function:

The value of the ridge curve search space cost function is
computed from the twelve features (Table VIII):

(EQ 22)

12
> R

featurei=0

EQ) =

where & is a candidate space curve control point. Since the
ridge curve requires maximum curvature values, the inverse
of these squared distance feature is minimized during simu-
lated annealing.

Tiling Curve Cost Function:

For tiling curves, the cost function is defined as:

(EQ23)

13
>

featurei=0

EQ) =

The curvature-based features, as well as the deviation mea-
sure (d,,) are minimized directly as squared distance features
for tiling curve control point identification (Table VIII).
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H. Ilustration of Control Point Location:

The rotating search planes are intended to identify optimal
control point locations to assign to the ridge or tiling curve
(FIG. 26A). For example, search planes for one ridge curve
(i.e., menton_to_l_gonion) are arrayed along the warped
ridge curve-based deformable template space curve in FIG.
26B. Here these search planes pass along the candidate ridge
curve control point normal superiorly to find intersection with
the voxels representing the base of the mandible. FIG. 26C,
shows the final ridge curve registration found by the simu-
lated annealing algorithm. Similarly, FIG. 26D shows a can-
didate tiling curve (i.e., r_ASSZ_to_r_PBP) and its associ-
ated search planes. FIG. 26F shows the fitted control points.
FIG. 27 shows the entire final ridge and tiling curve wire-
frame superimposed on the image surface.

1. Simulated Annealing Algorithm Description:

Four key elements are considered in our simulated anneal-
ing algorithm implementation: 1) The configuration defini-
tion; 2) Random candidate generation mechanism (i.e., defi-
nition of neighborhoods on the configuration space); 3) A cost
function; and 4) A cooling schedule. In our implementation,
we have first defined the configuration space with respect to
the curvature features necessary to locate ridge or tiling
curves on an image surface (Section 11.2.C). Second, candi-
date control points are randomly generated from the search
planes (Section II.2.F). Third, standard cost functions for
location of ridge and tiling curves have been defined (Section
11.2.G). Finally, the annealing procedure is described here.

The annealing algorithm (FIG. 28) attempts to minimize
the cost function E(C) where € is a continuously modified
candidate B-spline space curve control point, which lies in a
search plane intersecting the surface. A set of cost functions
E() are constructed from the sequence of template control
pomt deformations T', T2, to T* starting from ° at the initial
ridge curve-based deformable template control point esti-
mate. For each deformation, we have a set of P
candidates T,5, C,%, . . ., Cpk within multiple search plane in
current iteration, k. From the initial candidates, the best can-
didate T* is selected.

T of BT min (EQ24)

as k approaches the maximum number of iterations the cost
function E(C) reaches a stable control point £’. Simulta-
neously, the temperature, T,, a component of the annealing
procedure, is set to decrease monotonically. This parameter
limits the search area and determines the probability of deter-
mining the best candidate between iterations. As the tempera-
ture lowers, the search area and number of probable candi-
dates, narrows. At each iteration, k, the algorithm determines
a new value of the B-spline control point deformation param-
eters, based on the previous value (i.e., C*') and compares it
with the present value.

t* is determined with probability p,~1, which are defined
as:

tep-1 (£Q25)

L1 € pr-1

pk_l_m{ { E@) E@k 1)]} ]

T, is a monotonically decreasing temperature sequence,
E(€) is the cost function computed at the current position I,
and E(C*!) is the cost function computed in the preceding
iteration.

(EQ 26)
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The temperature schedule T, [34]:

(2

T, =
% T

where T, is initial temperature, T,is final temperature, and
k., 18 the number of maximum iterations allowed. FIG. 29
presents the temperature cooling schedule from the initial
temperature 100 to the final temperature, —10. We set the
number of iterations to 120 for our initial testing (see Section
4).

J. Final B-spline Ridge and Tiling Curve Registration:

FIG. 30 presents an overview of the ridge curve-based
deformable template registration process in SASE. Manual
editing of control point location is provided in the event that
the simulated annealing algorithm fails to register a ridge
curve arc to the operator’s satisfaction. The operator may also
locally vary the search parameters (i.c., sweep rotation
degree, search plane height and width, or annealing tempera-
ture).

3. Surface Extraction

The registered B-spline control points are interpolated to
produce a set of tile boundary points (i.e., smooth ridge or
tiling curves). We set the default number of tile boundary
points for each space curve to 50, assuming this would be
adequate in all cases. Each tile, therefore, consists of 2500
parametric points. Our soft tissue face ridge curve-based
deformable template consists of 44 surface tiles [Tables VI
and VII], 106376 tile points. Our skull ridge curve-based
deformable template consists of 47 surface tiles [Tables VI
and VII], 113334 tile points. Note that some of the tiles are
constructed with three bounding curves and the fourth side is
a degenerate endpoint of the first and third sides. Since they
are redundant, we can reduce the number of tile points
encoded somewhat from the fully quadrilateral tile case of
110000 (soft tissue face) and 117,500 (skull).

A. Space Curve Registration To Volume Image Surface:

The trace of 1,={I,,,, I,,, I,.} provides the path along each
tile boundary point normal to the voxel representing the seg-
mented surface in the volume image. The position of the
detected volume image surface point along the directed nor-
mal replaces the computed space curve point. FIG. 30A
shows tiling space curve points registered onto the volume
image surface via reference to the linked graphical manifold
image. The surface normal at each point is seen as a single
perpendicular line.

For each computed tile boundary point in a ridge curve or
geodesic B-spline, a nearest point is located on the segmented
surface voxels. The surface normal vectors, at current curve
point I are taken as the average of the local normal and
interpolated end point normals:

1, =((I-1I)/xsize)+(el - (1-p)+e2,,.p))2 (EQ 28)
L, =(((L~1)/xsize)+(el,  (1-p)+e2, ;p))2 (EQ29)
1, =((I~1I_,)/xsize)+(el, (1-p)+e2,,.p))/2 (EQ 30)

where xsize, ysize and zsize are the width, height and slices in
the volume image. I.,, ., 1., is the midpoint of each coordi-
nate, computed during the loading of a graphical manifold
produced from the external tile boundary points. The |
and I__ are:

oxd Icy

10

15

20

25

30

35

40

45

50

55

60

65

26

1< 1< 1<

Lo = TZ; Vie, Iy = TZ; Vip, loo = ?Z; Vie

(EQ 31)

where el ,,, and e2,, are the tiling space curve end point (i.e.,
Type 11 landmarks) normals, and p is the distance ratio of the
current position I to the nearest space curve end point.

B. Interior Tile B-spline Space Curves Extraction:

The internal surface tile point vertices are determined via

bi-linear Coons surface interpolation (equation 16). The
Coons surface is converted into set of interior tile B-spline
space curves along u and v parametric directions. The nor-
mals of each surface tile point are computed (equations 16,
28,29, and 30). These normals are used to index the tile points
to the volume image surface voxels (FIG. 30B).
We compute the normal at each parametric surface tile point
by directing a trace from the u, v location calculated from the
Coon’s surface to the voxels representing the segmented sur-
face in the volume image. The detected volume image surface
point replaces the Coons surface tile point. FIG. 30C shows
the extracted surface as it is displayed on the graphical mani-
fold for the operator’s approval.

4. Precision and Accuracy Tests and Results

The SASE 3D surface extraction program was written in C
in the Silicon Graphics Unix (IRIX) environment and tested
on a SGI Octane workstation (R10000 CPU, 256 Mbyte
RAM). User interaction occurs via X11/Motif protocols.

We tested the SASE program with five 3D CT data sets
(B2537, B2558, B2621, B3095, B3195) provided by a recall
of subjects to the Bolton-Brush Growth Study Center at Case
Western Reserve University. All subjects were females above
60 years in age. The boney skull and soft tissue face surfaces
were segmented in a separate program. We measured the
precision of our ridge curve-based deformable template reg-
istration and surface extraction by repetition. We compared
both our surface extraction and that obtained by the toolkit to
the segmented surface voxels in the volume image to test
inter-method accuracy.

A. Precision Tests:

Intra-operator precision was tested by repeating the SASE
template registrations and surface extractions. Direct differ-
ences between the two surface extractions are projected into
three orthogonal views (FIG. 31). Although, differences were
minimal, most were localized to the oral and orbital regions.
The oral region imprecision may be due to dental artifact. The
orbital region imprecision may be due to surface ambiguity in
thin bone structures. Operator manual effort in correcting
ridge curve extraction varied requiring between 10% (soft
tissue face) and 30% (skull) of the total surface extraction
time in the SASE
method. No tiling curve correction was necessary. We also
computed the square root mean of sum of squared distance
between all tile points (Table IX).

B. Inter-Method Accuracy Tests:

1. Visual Comparison: The left side of FIG. 32 A shows the
soft tissue face surfaces obtained via the SASE methods
versus the toolkit on the right side. FIG. 32B presents the
same comparison for the boney skull.

2. Computed Differences:

The same segmented surface voxel volume image data
were used for template registration and surface extraction by
both the toolkit and the SASE program. This provides a
baseline to compare how accurately the extracted surfaces
match the volume image surface.
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The toolkit generates an initial graphical manifold via the
Wrapper and then converts it to Alligator/Winged Edge for-
mat. The Toolkit’s Alligator/Winged Edge graphical mani-
fold is subsampled, first, during surface rendering from the
segmented voxel step, introducing an error on the order of +1
to £3 mm for a constant sub-sampling rate of 2x2x2. Second,
a wireframe is nudged into best position on this graphical
manifold by interpolation. This step increases the error at
each point by £1 to +£3 mm depending on the variable level of
parametric smoothing that the program automatically
applies. The SASE surface extraction program indexes (links)
the vertices of a less sub-sampled graphical manifold, used
for operator interaction and approval, to the original seg-
mented volume image voxels, where wireframe superimpo-
sition operations begin.

In our second inter-method test, the tile points in surfaces
extracted by both methods were mapped to the segmented
voxels in their shared source volume image space. The dis-
tances between the extracted surfaces and the nearest surface
voxel in the volume image along the surface tile point normals
were computed. Table X lists the square root of sum of
squared

distances for each method for all five CT data sets and both
surface extraction methods. The surfaces, deviated from the
original image voxels by an average of 6 mm for both the skull
and soft tissue face surfaces. The SASE method average error
was 0.47 mm for the soft tissue face and 0.46 mm for the
boney skull (i.e., pixel resolution). FIG. 33A shows color
coded difference images of the skull and soft tissue face
surface extraction comparisons with the segmented voxel
surface. Similarly, FIG. 33B shows the same color coded
difference images of SASE skull and soft tissue face surface
extractions. The error is scaled from lower difference in blue
to larger differences in red. Note that despite higher sampling
density the internal tile points are as true as the tile borders in
the SASE extractions. Table XI presents the same results tile
by tile. Note that the larger tiles have the greatest error in the
toolkit extractions, especially on the calvarium.

C. Other Inter-Method Differences:

1. Tile Point Density: FIG. 34 shows the tile point density.
The toolkit extracts fewer points than the SASE program.

2. Surface Patch Continuity:

Continuity of surface curvatures across surface tile bound-
aries is a critical rendering issue for parameterized ridge
curve-based deformable template surface extraction. The
toolkit interpolates surface normals providing smooth bound-
ary transitions (i.e., no seam). FIG. 35 displays the toolkit and
SASE surface extractions. The SASE program avoids inter-
polation, using the unaltered, detected segmented voxel sur-
face normals.

3. Tendency of Toolkit to Enlarge Ridge Features:

As seen in FIG. 32, the toolkit tends to produce a bowing
(see chin cleft, reduced nasal aperture, and reduced orbital
aperture) of some ridge curves. This is primarily due to the
interpolation process for surface tile boundary points beside
Type II landmarks.

4. Time Taken:

Skull surface extraction with the toolkit for an experienced
operator requires 2-3 hours. In the SASE interface, the opera-
tor may extract a skull surface in less than one hour, including
the manual effort in correcting 10 to 30% of the automated
ridge curve extractions.
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1I1. Averaging

1. Parametric Surfaces and Surface Extractions

A. Surface Parameterization

We use a semi-automatic surface parameterization pro-
gram, Simulated Annealing Surface Extraction (SASE), to
homology map the segmented volume image surface. The
SASE surface parameterization occurs via superimposition
of a ridge curve-based deformable template to each sample
member’s surface of interest. The first step in the SASE
method is manual location of Type II landmarks on a graphi-
cal manifold representation of the segmented surface voxels.
Second, the candidate ridge curve-based deformable tem-
plate is warped to these landmarks as in the toolkit. Finally,
ridge and tiling curve superimposition occurs via a simulated
annealing algorithm which primarily evaluates surface cur-
vature information found in the unsubsampled volume image
data. The superimposed ridge curve-based deformable tem-
plate defines a homology mapped parametric surface that is
encoded as a series of B-spline space curves. The toolkit does
not use volume image data to superimpose ridge curve-based
deformable templates, relying instead on the operator to
manually nudge the ridge curve deformable template onto a
graphical manifold.

B. B-Spline Ridge and Tiling Curve Wireframe

A B-spline space curve may be recorded as a set of 3D
1Q.}, &=1, . . ., n) points incrementally stacked along a
sweep in 3D space represented as a pth degree non-rational
B-spline. By assigning a parameter value, u, to each {Q,},
with an appropriate knot vector U={c., ..., 0, U, ;, 1, _,_,,
b, ..., b} where a and b are initial and final conditions (i.e.,
0...1), and m is an ascending function, a B-spline space
curve is:

u (EQ 32)
O =Clu) = »_ Ny ()P,

i=0

whereN, (u;) is the pth degree B-spline basis function. These
basis functions define the non-periodic and non-uniform knot
vector, U, and control points, P,.

We set the degree of interpolation components as 3, and order
4 (degree+1) for all space curves. B-spline basis functions of
the 3rd degree are defined as:

1, .., u<u<uy (EQ 33)
Nio(u) =
0, ... ,(u=<uw)or (u>u)
U=t 1 — U EQ 34
Nistuo) = Niaw) + =22 s (EQ 3%
Uipp — U i+4 — Uit]

from the initial condition, these interpolant variables are com-
puted with the knot vectors.

We use a chord length method to select each knot vector
and a linear averaging method to determine knot spacing
along the ridge curve and tiling curve B-spline space curves.
Knot density is pre-determined by the operator. Since each
axis is interpolated separately, as in the 2 dimensional case,
the x, y, and z axes can be treated separately to encode each
space curve.

C. B-spline Surface Tile Grids

Based on ridge curve and geodesic tile (tiling curve)
boundaries alone, a surface tile is defined as a bi-linearly
blended Coons surface. We extend this definition. We take the
internal tile point grid and tie it to the surface voxels seg-
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mented from the original volume. Next, we encode these
points as row and column B-spline curves in u, v space (FIG.
36A). This improved homology mapping prevents overlap-
ping of internal tile points during averaging. Our surface tiles
are either three or four sided. In the case of a three sided tile,
the fourth side is generated by placing the same number of
second side points, with each point filled by a common degen-
erate value from the intersection of the first and third bound-
ary space curves (FIG. 36B). Our template uses a bi-linear
blending function to define location for interior tile points:

1-w] (EQ35)
w

1

Qu,wy=[1-u u 1] =P1,0) =P(1,1) P(l,w)

—P(0,0) —P(0,1) PO,w)
P(u, 0) “

Plu, 1) 0

where the functions ((1-u), u, (1-w), w) (i.e., blending func-
tions) blend the boundary space curves to produce the pre-
liminary internal shape of the surface as a cosine function; P
is the parametric function representing the interior tile points
with respect to parametric values u and w. The surface points
generated are fitted to the original image surface via a surface
normal trace to the surface voxels segmented from the volume
image. The trace modifies the shape of the tile by registering
each final surface tile point to the original volume image
surface (i.e., segmented voxels). The operator sees the result
projected onto a graphical manifold surface. The surface tile
points are recorded as rows of B-spline space curves spanning
the two pairs of tile bounding space curves (FIG. 36).

The caption to FIG. 37 lists the Type Il landmarks found in
both soft tissue face and boney skull surface templates. Our
current soft tissue face template consists of 56 landmarks, 103
space curves (64 ridge curves and 49 geodesics), and 48
surface tiles (FIG. 37A). Our current skull template consists
of 54 landmarks, 104 space curves (40 ridge curves and 64
geodesics), and 47 surface tiles.

2. Computational Tools for Average Generation

As with the toolkit, the first step in our surface averaging
algorithm is the generation of an average Type Il landmark
configuration. We use the Procrustes superimposition method
to produce an average Type Il landmark configuration. The
ridge and tiling space curve B-splines making up each sample
member are globally warped to this average landmark shape
and locally unwarped.

A. Procrustes Superimposition for Production of Average
Type II Landmark Configuration

The Procrustes superimposition method is applied to two
landmark coordinate configurations at a time. The two
homologous shapes are referred to as landmark configura-
tions X, and X,, are pxk matrices with k-dimensional coor-
dinates of the p vertices of Type II landmarks. Since the
geometric operations are linear, this could be extended to
include any number of configurations, from X, to X,. The
order in which Procrustes Fitting occurs has no effect on the
shape of the final configuration. A Procrustes fit attempts to
minimize the sum of the squared distances between corre-
sponding vertices of both configurations.

Translation:

The coordinates of X, and X, are translated to a shared
origin, thereby k dimensions are reduced from the overall pk
dimensions. This is achieved by subtracting the respective
means of each axis from the X, and X, matrices. X, and X, are
translated to the origin by pre-multiplying X by (I-P), where
P is a p x p identity matrix, and is a matrix with every element
equal to 1/p. Therefore I-P is:
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1-1/p -1/p -1/p -1/p (EQ 36)
-l/p 1-1/p -1/p ~-1l/p
-l/p -1/p 1-1/p -1/p
-l/p -1/p -1/p 1-1/p

and the translation of X, and X, to a shared origin is computed
as X,'=(I-P)-X, and X,,'=(I-P)-X,. This translation is shown
in FIG. 38A.

Scaling:

A scalar value, called “Centroid Size,” S, of X, is calcu-
lated by taking the square root of the sum of squared distances
of each landmark to the centroid. Centroid size is computed
for each axis separately and divided for each control point P:

5, ~Virace(I-PIX, X, T-P)) (EQ37)

Similarly, S, of X, is calculated. The translated and scaled
version

1 1
X{ = o X{ and X{ = - X3
1

Sz

are seen in FIG. 38B.

Rotation:

The translated and scaled configuration is next rotated to
obtain a minimum root sum of square distance between cor-
responding points. The first step is to rotate all configurations
about the first configuration. Next the “rough” average (FIG.
38) position of all the rotated configurations is determined.
Finally, all configurations are rotated to the rough average
position to obtain the final average configuration. The con-
figuration X," is rotated to overlay on configuration X," so
that the root sum of squared distances between the corre-
sponding landmarks is minimized. First the n configuration is
rotated by transposing it and pre-multiplying it by H, a kxk
matrix. Therefore, the X," configuration to rotated X," is

Xr=x,"H (EQ 38)

Where X, is rotated X," configuration, t is the transpose
operator and H is obtained by H=VSU’ where V and U are
obtained from the singular value decomposition of the prod-
uct of transpose of X," and X," as:

XX, "= USV* (EQ39)

S is the matrix of diagonal elements of 1 corresponding to
the signs of the X matrix in equation 39. The average configu-
ration X, is the average of X", X,. The rotation is shown in
FIG. 38C. For the multiple configuration average, we first
compute the rough average X ' by rotating the configurations
to the first configuration, one at a time:

X2 ,:{Xl ”1X2 ”}1X3 = {Xl ”1X3 ”} e XN,: {Xl ”1XN”} (EQ 40)

where N is the number of configurations to be superimposed.
X ,'is computed as:

L, o " (EQ 4D
X4 =ﬁ{x1 +X 4.+ Xy}

To produce the final Type II landmark and tile boundary
B-spline control point average, we rotate each configuration
to the rough average configuration, X ,, one at a time:

X = {00 X ={X 0 =X X} (EQ42)
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The consensus average landmark configuration X, is com-
puted from X, X, . .., X, as:

. (EQ 43)

B. Thin Plate Splines

We use a thin plate spline to initially position all sample
member surfaces at the average Type 11 landmark configura-
tions. The first landmark transformations matched homolo-
gous regions of two and three dimensional wireframe draw-
ings of organisms. A spatial interpolation routine, widely
used in geology and metallurgy, the thin plate spline, was
suitably modified and applied to this problem. A thin plate
spline warp results in a bending energy matrix describing the
shape deformation of the anchor points (i.e., control points
and Type Il landmarks). We use the thin plate spline to provide
a global warp of sample member’s ridge, tiling curve, and
internal tile 13-spline points to the rough average Type II
landmark configuration.

Although the warp is based only on the Type II landmarks
shared by all sample members, the appropriate position of all
surface tile points is achieved via the mapping function f(R*-
R?) such that f(S,)=S ,, based on the Type II landmarks. This
function, a bi-harmonic equation U(r)=r* log r, is a general-

ized solution. The basis function r=Yx>+y” is limited to the
two dimensional case. We extend it to three dimensional

surfaces as U(r)=r, where r=V x*+y*+z>. A 3D thin plate spline
function can be generalized and interpreted visually as {(z, s,
t, 3(1, 5, ))eR|r, s, te R}. IfS , is our consensus average Type
II landmark reference configuration, with k=3 dimensions
and p vertices, (i.e., a kxp matrix), the matrix S, and function
matrix K are defined as:

11 1 .1 (EQ 44)
Xl X X3 .. X

Sl = ,4x

N IS TR CY R 8 P
21 L2 %3 - Ip
0 Ulrz) ... Ulrp) (EQ 45)
U(ra) 0 . Ulrap)

= . pXp
Ulrpy) Ulrp2) ... 0

U(r,,) is defined in 3D as the distance from the i to j the
point in the reference configuration as:

V) Ve 0y, + ) (EQ46)
Next, a projection operator L. is defined as:
K Su (EQ 47)
L= [SA o [ PrHX(P+D

0 is a 4x4 null matrix. We use these mapping functions to
globally warp a series of ridge curve based deformable tem-
plate (i.e., ridge, tiling, and internal tile B-spline space
curves) wireframes to the rough average Type II landmark
configuration via a global warp. Once in position, each space
curve is locally unwarped to begin the averaging process.
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In general, thin plate spline warping is defined with a set of
homologous points Y, as L~'Y, and the transformation is
defined:

G (EQ 48)
S =ALL Xy 2Vl + 2 n UGy,

3. Average Surface Generation

Our space curve averaging is a two step process. The first
step begins following the local unwarping of space curves that
were globally thin plate spline warped to an average landmark
configuration. Then all sample members are locally
unwarped and averaged, B-spline sample by B-spline sample
(i.e., each set of homologous ridge, tiling, or internal tile
curves).

A. Average Type II Landmark Configuration

We use the Procrustes Superimposition method to align the
sample member landmark configurations and compute an
average configuration from them. Procrustes fitting removes
variation due to position, orientation, and scale prior to our
calculating a simple average. In equation 45 we see that the
computed average configuration is set to X ,.

B. Average Space Curve Generation

This is accomplished algorithmically as follows: Let the
configurations S,, where n varies from 1 to N wireframe space
curves (i.e., The wireframe consists of the tile boundary
B-spline space curves). X, is an average landmark configu-
ration (Equation 45). Each sample configuration S,, is warped
to X, landmarks. We refer to this sample of globally warped
configurations as S, Next, each member of §, is locally
unwarped to the original configuration S,, for each space
curve. The locally unwarped and assembled space curves are
shown in FIG. 39 drawn between hypothetical Type II land-
marks A and B. A “rough” average curve is produced as a
direct average of the control point coordinates (note: this is
possible for B-splines but not for Bezier splines where the
control points may not lie on the encoded space curve). The
rough average curve is then re-splined. The re-splined rough
average curve is displayed as a dashed line in FIG. 39. The
second step is the generation of final average space curves.
Sampling planes (perpendicular bi-sectors) are positioned at
regularly spaced intervals along the rough average curve. A
control point for each sampling plane is produced from the
average of intercepted points. Finally, a B-spline space curve
is generated from the average intercept points (FIG. 39, thick
dark line).

The space curve averaging is done separately for each type
of space curve (i.e., ridge, tiling, and internal tile curves).
Ridge curves are further divided into arc-segments between
Type Il landmarks for averaging. The complete set of average
space curves represents the average surface.

C. Internal Tile Curve Averaging

Internal tile curves have either u or v orientation (see FI1G.
36). Therefore each internal tile point belongs to two
B-splines. We compute the average u and v internal tile
B-spline space curves separately. The average of these two
points is then substituted back to internal tile vertices, in order
to prepare a triangulated (graphical manifold) surface. Algo-
rithmically, B-spline internal tile curve segments in the u and
v direction may be represented as matrices:
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Cii Ciz oo Cry (EQ 49
Cy1 Cop oo Oy
S:(Cy) =
Cut Cuz oo Cuy
Cii Ciz o Cia
Co1 Cop - Oy
5(C) = g
G Gz oo Gy

The computed interior surface tile control points thus are the
average of the above two matrices, S,(C,) and S,(C,):

SHC) = S{(C) +S:(Cy) = (EQ 50)
Ciy Cip v Cry Cri Cip v Ciy
Gy Crp oo Coy N Cy1 Crp v Coy
Cyt Cy2 ... Cuy Cy1 Gz ... Coy

where t varies from 1 to the number of tiles in the whole
sample surface.

4. Precision and Inter-Method Tests and Results

The SSA program was written in C in the Silicon Graphics
Unix (IRIX) environment It was tested on a SGI Octane
workstation (R10000 CPU, 256M byte RAM). The program
interface integrates Procrustes superimposition, thin plate
spline warp, and surface averaging methods with graphical
manifold surface rendering operator feed back. User interac-
tion occurs via X11/Motif protocols.

To test the SSA program, we averaged soft tissue face
surfaces (FIG. 40A) and skull surfaces (FIG. 40B) from seg-
mented from 3D CT volume images. These five 3D CT data
sets (B2537, B2621, B3037, B3095, B3195) were provided
by a recall of subjects. All subjects are above 60 years in age,
female, have dental fillings, and often have large oral pros-
theses (dentures). The soft tissue face and skull surface seg-
mentation of the volume images was performed in a separate
program, SOFM. The ridge curve-based deformable template
superimposition and surface parameterization was done in an
another program, SASE.

A. Intra-Operator Precision Test

We conducted a precision test of the SSA methods between
two sessions by one operator. The operator introduces varia-
tion through initial seeding and subsequent fine tuning of the
ridge and tiling curve template superimposition. The overall
root mean square error between the surface tile points of two
averaging sessions, of the boney skull surface average was 0.0
mm and for the soft tissue face surface average was 0.0 mm.
This is complete agreement between sessions. This intra-
operator reproducibility result (i.e., precision) provides evi-
dence that the SSA method is reliable.

B. Inter-Method Tests

We next compared the surface sampling used to produce
average surfaces by the SSA program versus that of the toolkit
using the same segmented voxel data obtained from the
SOFM program. We hypothesize that improved homology of
tiling and internal tile curves in the SSA method will reduce
the variance of the sample members about the average.

i. Visual Comparison

We parameterized all 10 surfaces with both the SASE and
the toolkit for the soft tissue face (FIG. 41A) and the boney
skull (FIG. 41B). Note that the toolkit sample and average
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surface images appear to bow along every ridge curve edge
(e.g., orbits and nasal regions). Under the chin, we note that
this problem has exaggerated a notch not seen in the SSA
average. This bulging also results in smaller orbital and nasal
apertures relative to the shape seen in the original segmented
surface voxels. This and the smoother surface may be an
artifact of splining a lesser number of points than in the SSA
method.

ii. Inter-Method Comparison of Average Surface Warped
to Members” Original Segmented Voxel Surface

We thin plate spline warped the average surface to the Type
1T landmark configuration of it’s member surfaces. Then, we
traced each fitted average surface tile point to the segmented
surface image. Both averaging methods (i.e., toolkit and
SSA) used surfaces extracted from the same segmented vol-
ume image, providing a common basis for comparison
between the two methods. The computed square root of sum
of squared differences are listed in Table XII. Note, the num-
ber of tile points in the toolkit surface extractions is well
below that used in the SSA method. Given this difference, we
observed an average of 6 mm distance for the toolkit averag-
ing method for all points in the soft tissue face and skull
surfaces, whereas the average SSA distance were 0.448 mm
in the case of the soft tissue average and 0.419 mm in the case
of the skull average. Table XIII presents these results tile by
tile. FIG. 42A displays color coded difference images of
toolkit skull and soft tissue face surface averages with their
source segmented voxel surfaces. Similarly FIG. 42B shows
the same color coded difference images of the SSA skull and
soft tissue face surface averages. The same range of differ-
ence is scaled from lowest difference in blue to largest difter-
ence in red in both images. Note that despite higher sampling
density the internal tile points are as true as the tile borders in
the SSA extractions.

iii. Results

In FIG. 43 A, we see the toolkit average surface prior to the
final step of normal interpolation and averaging. FIG. 43B
presents the same surfaces afterward. FIG. 43C presents the
final SSA average surface; the SSA algorithm does not aver-
age surface normals. Note that seams are present but they less
disturb the continuity of surface curvature between the tile
surfaces. In both cases these are graphical rendering artifacts,
not an indication of inaccuracy in surface parameterization or
a non-shape preserving average.

5. Conclusion

One reason that the SSA average surface results better
preserve surface curvature continuity, and reduce variance
about the average, is the higher sampling density (FIG. 44).
Thetoolkit’s graphical manifold is subsampled at four stages.
Surface rendering of the segmented voxels introduces an
error of *! to *> mm assuming a sub-sampling rate of 2x2x2.

Second, a wireframe is manually nudged into best position
on this graphical manifold and then interpolated. This step
increases the error at each point by *! to *> mm depending on
the variable level of parametric smoothing that the program
automatically applies. Third, the surface is sparsely encoded.
This may eliminate some otherwise useful information from
the patient surface image.

Finally when generating the average, only the surface tile
boundaries (i.e., ridge curve and geodesic lines) are truly
averaged in the toolkit. The average interior tile points are
assigned, not found. Overall, the errors accumulated at each
surface tile point vary from 3 to 6 mm.

It appears to us that the SSA method improves tiling and
internal tile curve homology assignment. The SSA method
better preserves overall shape of 3D surfaces during averag-
ing because of (1) the improved homology assignment of
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internal tile points, and (2) the extension of the original space
curve averaging method to the entire surface.

The utility of average surface images for clinical diagnosis
needs validation. Their use for boney prosthetic design is
apparent. These methods were originally developed to quan-
tify diagnostic morphometric differences of clinical popula-
tions, however we expect these data have applications at every
stage of patient care, as well as other deformable model
applications including animation.

The invention has been described with reference to the
preferred embodiment. Obviously, modifications and alter-
ations will occur to others upon reading and understanding
the preceding detailed description. It is intended that the
invention be construed as including all such modifications
and alterations insofar as they come within the scope of the
appended claims or the equivalents thereof.

The invention claimed is:
1. A method for fabricating a 3-dimensional implant to be
implanted into a subject, the method comprising:
obtaining a computer readable image including a defective
portion and a non-defective portion of tissue in the sub-
ject;
identifying anatomical landmarks on the image;
superimposing on the image a 3-dimensional template to
span the defective portion;
deforming the template to match the anatomical landmarks
on the image;
determining a 3-dimensional shape of the implant based on
the template that spans the defective portion; and
fabricating the implant having the 3-dimensional shape.
2. The method of claim 1, wherein the superimposing on
the image the template to span the defective portion includes:
mapping highly curved portions of surfaces of at least one
of:
the subject and another individual, or
the subject and an average, wherein the average com-
prises an average of the surfaces of more than one
individual and
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establishing correspondence between the mapped
highly curved portions.

3. The method as set forth in claim 1, wherein the computer
readable image consists of slices of the defective portion and
the non-defective portion.

4. The method as set forth in claim 1, wherein the computer
readable image consists of scan lines of the defective portion
and the non-defective portion.

5. The method as set forth in claim 1, wherein the computer
readable image consists of voxels of the defective portion and
the non-defective portion.

6. The method as set forth in claim 1, further including:

determining a position for optimal adjacency between the

implant and the non-defective portion of the subject.

7. The method as set forth in claim 1, wherein the template
that spans the defective portion in the subject represents an
average shape of corresponding normal tissue in the patient.

8. The method as set forth in claim 1, wherein fabricating
the implant comprises printing with a 3-dimensional render-
ing device.

9. The method as set forth in claim 1, wherein the template
that spans the defective portion is drawn on the image as the
image is displayed by a computer.

10. The method as set forth in claim 9, wherein the template
that spans the defective portion represents a right-left mirror
image of a portion of the subject’s anatomy that includes the
defective portion.

11. The method of claim 10, wherein determining the 3-di-
mensional shape of the implant is determined as a function of
respective shapes of the defective portion and the template.

12. The method as set forth in claim 1, wherein the template
that spans the defective portion in the subject represents cor-
responding normal tissue in at least one other individual.

13. The method as set forth in claim 12, wherein the deter-
mining the 3-dimensional shape of the implant is determined
as a function of respective shapes of the defective portion and
the template.



